Boyce-Codd Normal Forms

Lecture 31

Robb T. Koether

Hampden-Sydney College

Wed, Apr 18, 2018

Third Normal Form

Example

Boyce-Codd Normal Form

Outline

Third Normal Form

Example

Boyce-Codd Normal Form

Third Normal Form

Definition (Transitive Dependence)

A set of attributes Z is transitively dependent on a set of attributes X if there exists a set of attributes Y such that $X \to Y$ and $Y \to Z$.

Definition (Third Normal Form)

A relation R is in third normal form (3NF) if it is in 2NF and there is no nonprime attribute of R that is transitively dependent on any key of R.

 3NF is violated if there is a nonprime attribute A that depends on something less than a key.

Example

order_no	sales_person	cust_no	cust_name
222	John Wilson	3333	Joe Smith
444	Tim Gramm	4444	Sue Taylor
555	David Simon	3333	Joe Smith
777	Tim Gramm	7777	Bob Sponge
888	Ben Sherman	4444	Sue Taylor
Toble 2			

Table 3

• Table 3 is in 2NF, but it is not in 3NF because

 $[order_no] \rightarrow [cust_no] \rightarrow [cust_name].$

3NF Normalization

 To put a relation into 3NF, for each set of transitive function dependencies X → Y → Z, make two tables, one for X → Y and another for Y → Z.

Example – 3NF Normalized Tables

Example – 3NF Normalized Table

order_no	cat_no	quant
222	1234	2
222	3456	2
444	4567	2
555	5678	3
555	6789	1
777	4567	2
888	1234	1

Table 1

	order_no	sales_person	cust_no	
222		John Wilson	3333	
	444	Tim Gramm	4444	
	555	David Simon	3333	
	777	Tim Gramm	7777	
	888	Ben Sherman	4444	
	Toble 4			

Table 4

cat_no	dept
1234	hardware
3456	hardware
4567	lumber
5678	garden
6789	garden
	•

Table 2

cust_no	cust_name
3333	Joe Smith
4444	Sue Taylor
7777	Bob Sponge

Table 5

The four tables above are in 3NF.

Outline

Third Normal Form

- Example
- Boyce-Codd Normal Form

Example (Second and Third Normal Form)

- Table 1 contains
 - Course ID
 - Course name
 - Tutor ID
 - Tutor name
- Table 2 contains
 - Course ID
 - Student ID
 - Student name
 - Date of birth
 - Number of absences
- Find the functional dependencies, candidate keys, and prime keys and put into 2NF and 3NF.

Outline

Third Normal Form

- 2 Example
- Boyce-Codd Normal Form

Boyce-Codd Normal Form

Definition (Boyce-Codd Normal Form)

A relation R is in Boyce-Codd normal form (BCNF) if for every attribute A and for every nontrivial functional dependency $X \to A$, X is a superkey of R.

 That is, no attribute (prime or nonprime) depends on anything less than a superkey.

Example

Bldg	Room	Start	End	Prof
Bagby	111	9:30	10:20	Valente
Bagby	020	10:30	11:20	Koether
Bagby	020	12:30	1:20	Koether
Morton	120	12:30	1:20	Marion
Morton	112	10:30	11:50	Booker
Gilmer	025	9:30	10:50	Thurman
Gilmer	012	9:30	10:20	Bloom

• What are the candidate keys?

Bldg	Room	Start	End	Prof
Bagby	111	9:30	10:20	Valente
Bagby	020	10:30	11:20	Koether
Bagby	020	12:30	1:20	Koether
Morton	120	12:30	1:20	Marion
Morton	112	10:30	11:50	Booker
Gilmer	025	9:30	10:50	Thurman
Gilmer	012	9:30	10:20	Bloom

- What are the candidate keys?
- Semantics: Each professor teaches in only one building.

- The candidate keys are
 - (Bldg, Room, Start)
 - (Bldg, Room, End)
 - (Start, Prof)
 - (End, Prof)
- Verify that this relation is in 3NF.

- ullet Prof o Bldg, but Prof is not a superkey.
- What to do?

BCNF Normalization

Room	Start	End	Prof
111	9:30	10:20	Valente
020	10:30	11:20	Koether
020	12:30	1:20	Koether
120	12:30	1:20	Marion
112	10:30	11:20	Booker
025	9:30	10:20	Thurman
012	9:30	10:20	Bloom

Prof
Valente
Koether
Marion
Booker
Thurman
Bloom

- To put the relation in BCNF, create a separate table based on the functional dependency X → A that violates BCNF.
- In this case, remove (Prof, Bldg) to a separate table.

Exercises

Example (Exercises)

For each of the following sets of functional dependencies, transform R(A, B, C, D) into BCNF, if it is not already in BCNF.

- $2 B \rightarrow C, B \rightarrow D.$

Exercises

Example (Exercises)

- A relation has three attributes: A: pizza_id, B: topping, C: topping_type.
- The semantics:
 - There are several topping types (e.g., meat, cheese, vegetable).
 - There are several toppings of each type (e.g., pepperoni, sausage).
 - A pizza may have only one topping of each type.
- List the dependencies.
- List the candidate keys and choose a primary key.
- Is this relation in 3NF?
- Is it in BCNF?